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The equilibrium and stability of a h igh-cur ren t  discharge have been theoret ical ly  investigated 
in a dense optically gray  plasma.  The plasma is assumed to be completely opaque to long- 
wave photons and completely t ransparent  to short -wave photons. The threshold frequency is 
determined by setting the diameter  of the p lasma pinch equal to the mean free path of the 
photons. We solve the equations of magnetohydrodynamics together with the equation of rad i -  
ative t r ans fe r .  We show that in a gray  plasma an equilibrium state can exist with a p rac t i ca l -  
ly homogeneous tempera ture  distribution over  the discharge c ros s  section. Tempera ture  
homogeneity is ensured by the large radiant thermal  conductivity, which is related to the long- 
wave radiation. The radiant thermal conductivity also causes the discharge to be stable with 
respect  to superheating. We analyze the possibili ty of using such a discharge for the energy 
pumping of a l a se r .  We show that for discharge cur ren ts  of o rder  106 A, the efficiency of a 
gray discharge exceeds the efficiency of an opaque discharge by a factor  of three.  

The equilibrium and stability of a h igh-cur ren t  pinched discharge have been investigated in [1-6] for  
the limiting cases  of optically opaque and completely t ransparent  p lasmas .  It was shown that for  high rad i -  
ant thermal  conductivity, the p lasma tempera ture  in the discharge,  to a high degree of accuracy,  is homo-  
geneous over  the discharge c ross  section if the discharge cur ren t  does not exceed some maximal value 
Jmax .  Such a p lasma radiates  as an ideal black body, i.e., it ensures  maximum radiation output in any 
given spectral  range.  In o rder  to sa t isfy  the conditions of applicability for  the approximation of radiant 
thermal  conductivity, the discharge cur rent  must  be g rea te r  than some minimal value Jmin (Jmax/Jmin ~3). 

It would appear that such a discharge is optimal f rom the point of view of its use as a source of rad ia-  
tion for pumping a laser ,  especial ly since it is more  stable than a t ransparent  discharge,  which is subject 
to a rapidly developing superheat  instability. It is evident, however, that an optically opaque discharge has 
low efficiency. Actually, for  l a se r  pumping we usually must  ensure  a radiation maximum in some spectra l  
region. We were par t icular ly  interested in the region 2000-3000 A. For  a black body, the radiation in this 
range for T = 3-5 eV is ~6~ of the total radiation. A t ransparent  discharge in the a tmosphere  of a number  
of elements has the neces sa ry  select ivi ty of radiation, but, as has a l ready been said, is much less  stable.  
Thus, the radia tor  that is optimal f rom the point of view of its use as a source  of radiat ion for pumping a 
l a se r  is a "gray" rad ia tor  close to black in the given wavelength range, and t ransparent  for radiation of 
shor te r  wavelength. We can expect that the long-wave radiation will ensure  the value of radiant  thermal  con- 
ductivity that is neces sa ry  to eliminate the superheat  instability. 

1 .  F o r m u l a t i o n  o f  t h e  P r o b l e m  a n d  F u n d a m e n t a l  E q u a t i o n s  

The complete sys tem of equations of magnetohydrodynamics taking account of the radiant energy flux 
for a completely ionized plasma,  which can be assumed to be an ideal gas,  can be written in the form [7, 8] 
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Here q is the energy flux of the substance;  S is the radiant flux, which will be determined below; M is 
the ion mass ;  z is the ion effective charge;  v s is the velocity of isothermal  sound; cr is the conductivity of 
the medium being considered;  and ~ = 4 �9 107. In writing down sys tem (1.1), in the same way as was done 
in [1-6], we neglect the electronic thermal  conductivity in compar ison with radiative heat exchange and the 
viscosi ty  t e rms  and we also neglect the radiant energy in compar ison with the internal (thermal) energies  
of the plasma par t ic les .  

To determine S we must  solve simultaneously the equation of radiative t rans fe r  and the sys tem (1.1). 
However, such a problem is mathematical ly  ext remely  complicated.  For  a gray body, as the s implest  ap-  
proximation, we can divide the radiant flux into two par ts :  S = S 1 + $2, where S1 is the radiant flux of the 
long-wave photons with frequencies v < v 0, for which the medium is completely opaque, and 82 is the rad i -  
ant flux of the shor t -wave photons with frequencies v > ~0, for which the medium is t ransparent .  Here v 0 
is some threshold frequency which is determined from the equation 

= :%' (%) r~ = l ,  (1.2) 

where T is the optical thickness of the discharge;  ~t~ is the spectal  coefficient of absorption taking account 
of r e - emi s s ion  (see [8]), and rp  is the equilibrium dimension (radius) of the p lasma cyl inder ,  which will be 
determined below. 

We calculate the fluxes 8 i and 82 for the case  of Bremsst rahlung,  when [8] 
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radiation of an absolute black body and fi0 = 2.8 �9 10 ~.  For  82, according Here Ivp is the intensity of 
to [2], we obtain 

% = 1.4-i0-% (1.5) ' ~  i f  div S~ ~ V ~ (rS~) = dv  d f ~ , ' L p  = "~o N~ ]/ 'TzSe "~~ 

2 .  E q u i l i b r i u m  o f  a P u n c h e d  D i s c h a r g e  
i n  an  o p t i c a l l y  G r a y  P l a s m a  

We consider  the s tat ionary equilibrium state of a simple cylindrical  d ischarge in a g ray  plasma when 
the tempera ture  is homogeneous over  the c ross  section. We see f rom sys tem (1.1) that in equilibrium the 
e lectr ic  field E0, which produces a cur ren t  in the plasma,  can be assumed to be homogeneous over  the 
c ross  section. Then the spatial distribution of p res su re ,  of density, and of magnetic field can easi ly  be de-  
termined f rom the f i rs t  three equations of sys tem (1.1) in the same way as was done in [1]: 
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w h e r e  P0(0), T0(0), and P0(0) a r e  the  v a l u e s  of the  p r e s s u r e ,  t e m p e r a t u r e ,  and d e n s i t y  on the d i s c h a r g e  a x i s ,  
and J i s  the  g iven  to t a l  c u r r e n t  in  the  d i s c h a r g e .  We a l so  a s s u m e  g iven  the t o t a l  n u m b e r  of p a r t i c l e s  in 
the  d i s c h a r g e  p e r  uni t  l eng th  Nn. Then  

~r ~, J~ T O (0) = J~ 
Nn ----- - - ~  No (0) = 2~c~ (1 -}- z) To (0) ' 2kc z (1 -4- z) N n �9 (2.2) 

Next  s u b s t i t u t i n g  E q s .  (2.1), (1.4), and  (1.5) into the  h e a t - b a l a n c e  equa t ion  of s y s t e m  (1.1), we f ind 
the t e m p e r a t u r e  d i s t r i b u t i o n  T0(r ) o v e r  the  c r o s s  s e c t i o n  of the p l a s m a  c y l i n d e r :  

{ A o r ' (  3r ~ lOr' 5r s r @ )  D o r 2 (  r ~ r3_@~ ) } 
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= ToNo~ (o) V To (o) ~-~0 ,  Co = ~ l (~o), Do Po (o)~ Ao 2~6or v~ ' 

We can  now w r i t e  the  cond i t i on  of  a p p l i c a b i l i t y  of the  a p p r o x i m a t i o n  a s s u m e d  above  to the  h o m o g e n e i t y  
of the  p l a s m a  t e m p e r a t u r e  o v e r  the  c r o s s  s e c t i o n  of the  d i s c h a r g e :  

Aorv ~, 2Dd'v 2 , ~  4CoT 0 (0). (2.4) 

To c o m p l e t e l y  c l o s e  the  p r o b l e m ,  we w r i t e  the  e n e r g y  b a l a n c e  on the d i s c h a r g e  s u r f a c e :  

S (rv) = @ ~oEo 2 = 
j2 J~z 

~ p ~  --  2n2aro%rl ~ , (2.5) 

As  was  shown in [9], the  r a d i a n t  f lux f r o m  the  s u r f a c e  of a p l a s m a  c y l i n d e r  wi th  a h o m o g e n e o u s  t e m -  
p e r a t u r e  d i s t r i b u t i o n  i s  g iven  by the equa t ion  

dy [~d~ / t5 5 , "il 

0 

(2.6) 

Th i s  i n t e g r a l  can  be c a l c u l a t e d  only  a p p r o x i m a t e l y ;  t h e r e f o r e ,  we d iv ide  i t  into two, a s s u m i n g  tha t  in 
the l o n g - w a v e  p a r t  f r o m  0 to x 0 the  d i s c h a r g e  r a d i a t e s  a s  a b l a c k  body,  i . e . ,  ~- = ~ r p  >> 1, and fo r  x > x 0 
the d i s c h a r g e  i s  t r a n s p a r e n t ,  i . e . ,  T << 1. As a r e s u l t ,  Eq.  (2.6) can  be w r i t t e n  in the  f o r m  

o~ 
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H e r e  the  f i r s t  t e r m  in the  b r a c e s  d e s c r i b e s  the r a d i a t i o n  of l o n g - w a v e  photons ,  and in the  l i m i t  
x 0 ~ ~ i t  g i v e s  the w e l l - k n o w n  e x p r e s s i o n  crT 4, w h e r e  (r i s  the  S t e f a n - B o l t z m a n n  c o n s t a n t .  The s e c o n d  
t e r m  d e s c r i b e s  the  r a d i a t i o n  of the  s h o r t - w a v e  pho tons  w h e r e ,  in the d e r i v a t i o n ,  the exponen t  i s  e x p a n d e d  
in a s e r i e s ,  which  i s  p o s s i b l e  s i n c e ,  in th i s  r e g i o n ,  ~ ' u r p  << 1, # _< 1, and the dy p o r t i o n  of  the  i n t e g r a l  g i v e s  
the  r e g i o n  of y v a l u e s  c l o s e  to  un i ty .  I n t e g r a t i n g  (2.7), a f t e r  s i m p l e  t r a n s f o r m a t i o n s  we ob ta in  

S - -  2~ (kTo) ~ (q)(Xo) @ 2 ~ (xo)) __---- 2~ (kro) 4 
~h~ ~h~ ~ (Xo), 
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I xUdx x~ (2.8) 
(Zo) = e ~ -  1 ' r (Xo) - e~o_~. 

0 

We can  now c a l c u l a t e  the  e q u i l i b r i u m  r a d i u s  of the  d i s c h a r g e  rp ,  s u b s t i t u t i n g  the  s e c o n d  of E q s .  (2.2) 
fo r  T o and the  e x p r e s s i o n  ob t a ined  fo r  S into Eq.  (2.5): 

Nt~/, 
~.7.t0- z (l -{- z)"/2- ,19- (2.9) 
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Taking account  of this  equat ion,  and a l so  Eqs .  (2.2) and (1.3), we can 
wr i te  Eq. (1.2) fo r  the de t e rmina t ion  of x 0 in the f o r m  

z ~ 1- -e  -x~ j _ _  
1"8"t0-3~ (t---+--Z) ~(Xo) zo 3 . I .  (2.10) 

F r o m  this equat ion,  we can de t e rmine  the magni tude  of  the t h r e s h -  
old photon x 0 fo r  a given d i s c h a r g e  c u r r e n t  and, hence ,  the exac t  d i s -  
t r ibu t ions  of all the quant i t ies  in the d i s c h a r g e .  To d e t e r m i n e  the t e m -  
p e r a t u r e  in the d i scha rge ,  we m u s t  inves t iga te  the condi t ions  (2.4), fo r  
which the t e m p e r a t u r e  can be a s s u m e d  homogeneous  o v e r  the r ad iu s .  
F o r  A 0 < 2D0, the t e m p e r a t u r e  d e c r e a s e s  away f r o m  the axis ,  and if the 
opposi te  inequal i ty  is sa t i s f ied ,  the t e m p e r a t u r e  i n c r e a s e s  t oward  the 
edges .  We f i r s t  c o n s i d e r  the f i r s t  of inequal i t ies  (2.4). It  can  eas i ly  be 
r e duc e d  to the f o r m  

o.8 ~,e -zo ,<e-*', I 

o ! 

F ig .  2 

(2.11) 

Thus we can e l imina te  the d i s c h a r g e  c u r r e n t  J us ing  (2.10), and 
we find that  x0, fo r  a homogeneous  t e m p e r a t u r e ,  s a t i s f i e s  the inequal i ty  

(x0) ~ 2.6 1 - e-'~______~ ' / (xo) = F (x0). 
X0 3 

(2.12) 

We shal l  ana lyze  this  inequal i ty .  F igu re  1 shows c u r v e s  of the 
funct ions in the r igh t  and left  p a r t s  of this  inequal i ty .  We see  that  the 
reg ion  of poss ib le  values  of  x 0 that  s a t i s fy  inequal i ty  (2.12) a r e  included 
within the l imi t s  2 ~ x 0 rain < x0 < x0 max ~ 12. The second  of inequa l i -  
t ies  (2.4) is wr i t t en  in the f o r m  

2.2r (xo) ~.~. F (xo). (2.13) 

F igu re  1 shows that  this  inequal i ty  does  not p lace  any addit ional  c o n s t r a i n t s  on x0, s ince  X0min, as 
usual ,  ~2,  X0max -~ ~ .  Thus ,  the t e m p e r a t u r e  in the p l a s m a  can  be a s s u m e d  to be homogeneous  ove r  the 
c r o s s  sec t ion ,  with the fol lowing inequal i t ies  being sa t i s f ied :  

2 .~ Xo rain < X0 < Xo max ~ 12. (2.14) 

If  we now subst i tu te  the l imi t ing  values  of x 0 into Eq. (2.10), then we find that  the d i s c h a r g e  c u r r e n t  
can  v a r y  o v e r  the l imi t s  (in a m p e r e s )  

5.3"105 (~-2~)  < J < 4.2' i06 ( l-~+z z ). (2.15) 

In a comple t e ly  opaque p l a s m a  [6], the magni tude  of the d i s c h a r g e  c u r r e n t  is bounded by the inequa l i -  
t ies  

100 <  3t00 (2.16> 

Hence we see  that  within the l imi t s  of a c c u r a c y  of the ca lcu la t ion ,  the uppe r  l imi t  does  not change .  
This  is na tu ra l  s ince  the uppe r  l imi t  of the c u r r e n t  c o r r e s p o n d s  to X0ma x ~ 12, i .e . ,  n e a r  the upper  l imi t ,  
the p l a s m a  is  opaque p r a c t i c a l l y  o v e r  the en t i re  s p e c t r a l  r ange .  At the s a m e  t ime,  the l ower  l imi t  of the 
d i scha rge  c u r r e n t  is s t rong ly  d i sp laced  t oward  lower  va lues .  This is a consequence  of the fact  that  the t e m -  
p e r a t u r e  is hom oge ne ous  in the d i s c h a r g e ,  i .e . ,  the magni tude  of rad ian t  t h e r m a l  conduct iv i ty  m u s t  be c a p -  
able of gua ran tee ing  the p r e s e n c e  of long-wave  photons  in the r ange  f r o m  0 to x 0. 

We now c o n s i d e r  the condi t ion A 0 < 2D0, which c o r r e s p o n d s  to a d e c r e a s e  in t e m p e r a t u r e  f r o m  the 
d i s c h a r g e  axis  to the p e r i p h e r y .  We can  ea s i l y  show that  it r e d u c e s  to the f o r m  

t - ~xo 
(x0) = ~ (xo) ~ > 2e -x~ (2.17) 
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As follows f r o m  Fig.  2, this  express ion  is violated only for  x 0 ~ 2, i .e . ,  outside of the region under  
considera t ion .  

In conclusion,  we comment  on the total  radia t ion output of a g r ay  d i scharge .  The ra t io  of the total  
radiat ion flux of an opaque d ischarge  S* to the radia t ion flux of a g r a y  d ischarge  S is given by the following 
express ion :  

c o  

i (' x a . 6.5 
(~o) .~ : _  i ~ (~o)" 

0 

(2.18) 

Hence we see  that this ra t io  depends on x0, i .e . ,  on the s t rength  of the d ischarge  cu r ren t .  For  l a rge  
x0, i .e . ,  fo r  values  of cu r ren t  c lose  to Jmax ,  ~? -+ 1,and the g r a y  d i scharge  behaves  as an absolute b lack  
body. Fo r  smal l  d i scharge  cu r r en t s  (close to Jmin)  the quantity ~? is  different  f r o m  unity, and i ts  max ima l  
value equals 

6.5 ~ 3. (2.1 9) Vlmax = ~ (% rain) 

This indicates  that  fo r  a d i scharge  cu r r en t  c lose  to Jmin ,  the eff ic iency of a g r a y  d i scharge  is  g r e a t e r  
than the eff ic iency of an opaque d i scharge  - by approx imate ly  a f ac to r  of 3. Assuming  z = 1, we obtain 
Jmin  = 1.1 �9 106 A; in the opaque d i scharge ,  for  z = 1, we have J m i n  = 2.8 �9 106 A. 

3 .  S t a b i l i t y  o f  S m a l l  P e r t u r b a t i o n s  i n  a G r a y  P l a s m a  

In the case  being cons idered ,  of a g r a y  d ischarge  with a homogeneous t e m p e r a t u r e  dis t r ibut ion,  power  
ins tabi l i t ies  (constr ict ions and bends) should develop in en t i r e ly  the s a m e  way as for  the case  of a d i scharge  
in an opt ical ly  opaque p l a s m a .  The point is that in an invest igat ion of power  ins tabi l i t ies ,  the equation of 
heat  balance,  which contains all the c h a r a c t e r i s t i c s  of "g rayness"  of the p la sma ,  genera l ly  cannot be taken 
into account; t he re fo re ,  the ent i re  analys is  c a r r i e d  out in [1, 4, 5] r ema ins  valid also in the ca se  under  con-  
s idera t ion;  the max ima l  value of the growth ra t e  for  power  instabi l i t ies  is 

Genera l ly  a superhea t  instabi l i ty  does not develop in an opt ical ly  opaque p l a sma .  We show that in a 
g r ay  d ischarge  a superhea t  instabi l i ty  resul t ing  f rom the ohmic heating of a p l a s m a  is also regula ted  by the 
radiant  t h e r m a l  conductivity connected with the long-wave radia t ion.  

In o r d e r  to inves t igate  the superhea t  instabi l i ty,  as is Imown [2, 3], it is sufficient  to cons ider  only 
the shor t -wave  rad ia l  pe r tu rba t ions ,  desc r ibed  within the f r a m e w o r k  of the ze ro  approximat ion  of g e o m e t -  
r i ca l  optics [10]. The re fo re ,  the pe r tu rbed  quanti t ies can be r e p r e s e n t e d  in the fo rm e -~t§ where  
k r p  >> 1. We cons ider  the h igh-f requency region r >> kvs,  s ince the superhea t  instabil i ty,  if it ex is t s ,  in 
genera l ,  by vi r tue  of (2.1) can develop only in this region.  The h e a t - t r a n s f e r  equation in the d ischarge  can 
be wri t ten in the f o r m  [7] 

,u---]V-L-~-F+ (vV)] In p = aE2--YoN~VTzae-xo+div'3~ (3.2) 

Under the conditions 

c~ka 
~ .  co ~ k~s. (3.3) 

the e lec t r i c  field during the t e m p e r a t u r e  osci l la t ions  becomes  smoothed out ove r  the d ischarge  c r o s s  s e c -  
tion, but the densi ty,  on the con t r a ry ,  does not change.  F u r t h e r m o r e ,  we can neglect  the second t e r m  on 
the left  side of Eq. (3.2). Conver t ing to smal l  per tu rba t ions  of the equi l ibr ium t e m p e r a t u r e  T --~ T O + T 1 and 
l inear iz ing  Eq. (3.2), we obtain 

Hence we obtain 

OTx =__3_2[/: ) 
0-7 3Co \'Wo - 'k~coro /1. 

2 ( 1'o '~ - -  k2CoTo). o) = i g-~o \ ~ ~ 

(3.4) 

(3.5) 
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This equation can also be obtained from a more rigorous consideration, i.e.,  from the eikonal equa- 
tion; the linearized system of equations of motion (1.1) reduces to the eikonal equation in the limit of short 
oscillation wavelengths (over the radius), described in the framework of the zero approximation of geomet- 
r ical  optics. Note that the f irs t  te rm in (3.5) is simply the growth rate of a high-frequency superheat insta- 
bility in a transparent plasma [2, 3]. We can easily show that in a gray plasma this instability is stabilized 
by the long-wave radiation described by the second term in (3.5), and practically does not develop, since 
both terms in (3.5) are of the same order ,  and the condition w >> kv s is not satisfied. 
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