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The equilibrium and stability of a high-current discharge have been theoretically investigated
in a dense optically gray plasma. The plasma is assumed to be completely opaque to long-
wave photons and completely transparent to short-wave photons. The threshold frequency is
determined by setting the diameter of the plasma pinch equal to the mean free path of the
photons, We solve the equations of magnetohydrodynamics together with the equation of radi-
ative transfer, We show that in a gray plasma an equilibrium state can exist with a practical-
ly homogeneous temperature distribution over the discharge cross section. Temperature
homogeneity is ensured by the large radiant thermal conductivity, which is related to the long-
wave radiation. The radiant thermal conductivity also causes the discharge to be stable with
respect to superheating. We analyze the possibility of using such a discharge for the energy
pumping of a laser. We show that for discharge currents of order 10° A, the efficiency of a
gray discharge exceeds the efficiency of an opaque discharge by a factor of three.

The equilibrium and stability of a high-current pinched discharge have been investigated in [1-6] for
the limiting cases of optically opaque and completely transparent plasmas. It was shown that for high radi~
ant thermal conductivity, the plasma temperature in the discharge, to a high degree of accuracy, is homo-
geneous over the discharge cross section if the discharge current does not exceed some maximal value
Jmax. Such a plasma radiates as an ideal black body, i.e., if ensures maximum radiation output in any
given spectral range. In order to satisfy the conditions of applicability for the approximation of radiant
thermal conductivity, the discharge current must be greater than some minimal value Jyin Tmax/Tmin®3).

It would appear that such a discharge is optimal from the point of view of its use as a source of radia-
tion for pumping a laser, especially since it is more stable than a transparent discharge, which is subject
to a rapidly developing superheat instability. It is evident, however, that an optically opaque discharge has
low efficiency. Actually, for laser pumping we usually must ensure a radiation maximum in some spectral
region. We were particularly interested in the region 2000-3000 A. For a black body, the radiation in this
range for T = 3-5 eV is ~67 of the total radiation. A transparent discharge in the atmosphere of a number
of elements has the necessary selectivity of radiation, but, as has already been said, is much less stable.
Thus, the radiator that is optimal from the point of view of its use as a source of radiation for pumping a
laser is a "gray" radiator close to black in the given wavelength range, and transparent for radiation of
shorter wavelength. We can expect that the long-wave radiation will ensure the value of radiant thermal con-
ductivity that is necessary to eliminate the superheat instability.

1. Formulation of the Problem and Fundamental Equations

The complete system of equations of magnetohydrodynamics taking account of the radiant energy flux
for a completely ionized plasma, which can be assumed to be an ideal gas, can be written in the form [7, 8]
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Here q is the energy flux of the substance; S is the radiant flux, which will be determined below; M is
the ion mass; z is the ion effective charge; vg is the velocity of isothermal sound; ¢ is the conductivity of
the medium being considered; and & = 4 - 107, In writing down system (1.1), in the same way as was done
in [1-6], we neglect the electronic thermal conductivity in comparison with radiative heat exchange and the
viscosity terms and we also neglect the radiant energy in comparison with the internal (thermal) energies
of the plasma particles,

To determine S we must solve simultaneously the equation of radiative transfer and the system (1.1).
However, such a problem is mathematically extremely complicated, For a gray body, as the simplest ap~
proximation, we can divide the radiant flux into two parts: 8 =8, +8,, where 8, is the radiant flux of the
long-wave photons with frequencies v < v, for which the medium is completely opaque, and 8, is the radi-
ant flux of the short-wave photons with frequencies » > v, for which the medium is transparent. Here v,
is some threshold frequency which is determined from the equation

T=S (V) rpy=1, (1.2)

where 7T is the optical thickness of the discharge; wj is the spectal coefficient of absorption taking account
of re-emission (see [8]), and ry is the equilibrium dimension (radius) of the plasma cylinder, which will be

determined below.

We calculate the fluxes 8; and S, for the case of Bremsstrahlung, when [8]
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Here Iy is the intensity of radiation of an absolute black body and g; = 2.8 - 10'7. For S,, according
to [2], we obtain

div =12 (r5) = S v d0u/ I, = 1 N2 Y Tes,  1p=14-107, (1.5)
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2. Equilibrium of a Punched Discharge
in an Optically Gray Plasma

We consider the stationary equilibrium state of a simple cylindrical discharge in a gray plasma when
the temperature is homogeneous over the cross section. We see from system (1.1) that in equilibrium the
electric field E;, which produces a current in the plasma, can be assumed to be homogeneous over the
cross section. Then the spatial distribution of pressure, of density, and of magnetic field can easily be de-
termined from the first three equations of system (1.1) in the same way as was done in [1]:
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where Py(0), Ty(0), and p,(0) are the values of the pressure, temperature, and density on the discharge axis,
and J is the given total current in the discharge. We also assume given the total number of particles in
the discharge per unit length Np. Then
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Next substituting Egs. (2.1), (1.4), and (1.5) into the heat-balance equation of system (1.1}, we find
the temperature distribution Ty(r) over the cross section of the plasma cylinder:
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We can now write the condition of applicability of the approximation assumed above to the homogeneity
of the plasma temperature over the cross section of the discharge:

Agg®, 2Dyt <<4C,T, (0) (2.4)
To completely close the problem, we write the energy balance on the discharge surface:

r J2 J?z
S(rp) = 2 Sokly 2aeGor 3 T 2l B (2.5)

As was shown in [9], the radiant flux from the surface of a plasma cylinder with a homogeneous tem~
perature distribution is given by the equation
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This integral can be calculated only approximately; therefore, we divide it into two, assuming that in
the long-wave part from 0 to x, the discharge radiates as a black body, ie., 7= ny, r, > 1, and for x > x,
the discharge is transparent, ie., T < 1, As a result, Eq. (2.6) can be written in the form
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Here the first term in the braces describes the radiation of long-wave photons, and in the limit
Xy — it gives the well-known expression ¢ T%, where ¢ is the Stefan—Boltzmann constant. The second
term describes the radiation of the short-wave photons where, in the derivation, the exponent is expanded
in a series, which is possible since, in this region, w,,rp « 1, 4 =1, and the dy portion of the integral gives
the region of y values close to unity. Integrating (2.7), after simple transformations we obtain
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We can now calculate the equilibrium radius of the discharge Tp, substituting the second of Egs. (2.2)
for T, and the expression obtained for S into Eq. (2.5):
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o EFy A\ Taking account of this equation, and also Eqs. (2.2) and (1.3), we can
\ write Eq. (1.2) for the determination of x, in the form
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tributions of all the quantities in the discharge. To determine the tem-
¢ Z < perature in the discharge, we must investigate the conditions (2.4), for
22% which the temperature can be assumed homogeneous over the radius.
— % For A, < 2D, the temperature decreases away from the axis, and if the
v 7 Z # opposite inequality is satisfied, the temperature increases toward the
edges. We first consider the first of inequalities (2.4). It can easily be
reduced to the form
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Thus we can eliminate the discharge current J using (2.10), and
we find that x;, for a homogeneous temperature, satisfies the inequality

o
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~—| We shall analyze this inequality. Figure 1 shows curves of the
0= 7 7% functions in the right and left parts of this inequality. We see that the
region of possible values of x, that satisfy inequality (2.12) are included
Fig. 2 within the limits 2 & Xymin < X < Xymax~ 12. The second of inequali-

ties (2.4) is written in the form

2.2¢ (xo) < F (zo)i (2.13)

Figure 1 shows that this inequality does not place any additional constraints on x;, since xjyin, as
usual, =2, Xymax — *. Thus, the temperature in the plasma can be assumed to be homogeneous over the
cross section, with the following inequalities being satisfied:

2 = 2o min < Ty < Zo max =~ 12 (2.14)

If we now substitute the limiting values of x; into Eq. (2.10), then we find that the discharge current
can vary over the limits (in amperes)

5.3-10° (%i)<1<4.2-106 (£9). (2.15)

In a completely opaque plasma [6], the magnitude of the discharge current is bounded by the inequali-
ties

1.4-108 (Jizi) < T <43:40° (1—jz) (2.16)

Hence we see that within the limits of accuracy of the calculation, the upper 1imit does not change.
This is natural since the upper limit of the current corresponds to xymax = 12, i.e., near the upper limit,
the plasma is opaque practically over the entire spectral range. At the same time, the lower limit of the
discharge current is strongly displaced toward lower values, This is a consequence of the fact that the tem-
perature is homogeneous in the discharge, i.e., the magnitude of radiant thermal conductivity must be cap-
able of guaranteeing the presence of long-wave photons in the range from 0 to x,.

We now consider the condition A, < 2Dy, which corresponds to a decrease in temperature from the
discharge axis to the periphery. We can easily show that it reduces to the form
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As follows from Fig. 2, this expression is violated only for x, € 2, i.e., outside of the region under
consideration.

In conclusion, we comment on the total radiation output of a gray discharge. The ratio of the total
radiation flux of an opague discharge S* to the radiation flux of a gray discharge S is given by the following
expression:

1t ¢ @ 6.5
=% S 1~ ey (2.18)

Hence we see that this ratio depends on x, i.e., on the strength of the discharge current. For large
Xy, 1.8., for values of current close to Jyax, 7 — 1, and the gray discharge behaves as an absolute black
body. For small discharge currents {close to Jyyin) the quantity n is different from unity, and its maximal
value equals

6.5
Nmax = T Gy 3. (2.19)

This indicates that for a discharge current close to Jy, i, the efficiency of a gray discharge is greater
than the efficiency of an opaque discharge — by approximately a factor of 3. Assuming z = 1, we obtain
Jmin = 1.1 - 10° A; in the opaque discharge, for z = 1, we have Jyin = 2.8 - 10° A,

3. Stability of Small Perturbations in a Gray Plasma

In the case being considered, of a gray discharge with a homogeneous temperature distribution, power
instabilities (constrictions and bends) should develop in entirely the same way as for the case of a discharge
in an optically opaque plasma. The point is that in an investigation of power instabilities, the equation of
heat balance, which contains all the characteristics of "grayness" of the plasma, generally cannot be taken
into account; therefore, the entire analysis carried out in [1, 4, 5] remains valid also in the case under con-
sideration; the maximal value of the growth rate for power instabilities is

'I’max gvs/rp- ) (3.1)

Generally a superheat instability does not develop in an optically opaque plasma., We show that in a
gray discharge a superheat instability resulting from the ohmic heating of a plasma is also regulated by the
radiant thermal conductivity connected with the long-wave radiation,

In order to investigate the superheat instability, as is known [2, 3], it is sufficient to consider only
the short-wave radial perturbations, described within the framework of the zero approximation of geomet-
rical optics [10]. Therefore, the perturbed quantities can be represented in the form ¢ ™", where
kr, > 1. We consider the high-frequency region w > kvg, since the superheat instability, if it exists, in
general, by virtue of (2.1) can develop only in this region, The heat-transfer equation in the discharge can
be written in the form [7]
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Under the conditions
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the electric field during the temperature oscillations becomes smoothed out over the discharge cross sec-
tion, but the density, on the contrary, does not change, Furthermore, we can neglect the second term on
the left side of Eq. (3.2). Converting to small perturbations of the equilibrium temperature T — T, + Ty and
linearizing Eq. (3.2), we obtain
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Hence we obtain

@ =i e (.’503 — k”CoTo).

3P, (3.5)

31



This equation can also be obtained from a more rigorous consideration, i.e., from the eikonal equa-

tion; the linearized system of equations of motion (1.1) reduces to the eikonal equation in the limit of short
oscillation wavelengths (over the radius), described in the framework of the zero approximation of geomet-
rical optics, Note that the first term in (3.5) is simply the growth rate of a high-frequency superheat insta-
bility in a transparent plasma [2, 3]. We can easily show that in a gray plasma this instability is stabilized
by the long-wave radiation described by the second term in (3.5), and practically does not develop, since
both terms in (3.5) are of the same order, and the condition w > kvg is not satisfied.
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